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Geodesic chaos around quadrupolar deformed centers of attraction
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The exact solution to the Einstein equations that represent a static axially symmetric source deformed by an
internal quadrupole is considered. The Poincare´ section method is used to study numerically the geodesic
motion of test particles, for prolate quadrupole deformations, we find chaotic motions contrary to the oblate
case where only regular motion is found. We also consider the metric that represents a rotating black hole
deformed by a quadrupole term. This metric is obtained as a two-soliton solution in the context of Belinsky-
Zakharov inverse scattering method. The stability of geodesics depends strongly on the relative direction of the
spin of the center of attraction and the angular momentum of the test particle.
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INTRODUCTION

After the visionary work of the Poincare´ @1# and the KAM
~Kolmogorov, Arnold, and Moser@2#! theories, it became
well established that nonintegrability, and hence chaos,
general rather than exceptional manifestation in the con
of dynamical systems, see for instance, Ref.@3#. Given this
ubiquitous fact, an important issue in astronomical model
is the study in which extent in phase space chaoticity rise
models that are relevant to describe real systems and
are its consequences.

The adequate description of the gravitation field of
astrophysical object has been an important subject in b
relativistic and Newtonian gravity since their origin. The pa
ticular case of the gravity associated to an axially symme
body has played a central role in this discussion. Recen
Merrit @4# found, from detailed modeling of triaxial galaxie
that most of the galaxies must be nearly axisymmetric, eit
prolate or oblate. In Newtonian theory the gravitational p
tential of an axially symmetric body can be always rep
sented by its usual expansion in terms of the Legendre p
nomials ~zonal harmonics!. The underlying theory in this
case is the usual Newtonian gravitation that, for large mas
and velocities, is known to be less appropriate than the E
stein general relativity. In the latter case the Newtonian
tential is replaced by the space-time metric and Newton m
tion equations by geodesics. In general relativity, we h
that the solution of the vacuum Einstein equations associ
to a static axially symmetric body has a simple form w
only two metric functions@5#, and one of them admits a
expansion in zonal harmonics. For rotating axially symm
ric bodies we have a metric with three functions and two
them obey a sigma-model type of partial differential equ
tions for which there are known methods of solution@6#.

The change of the particle motion equation and grav
tional theory can produce dramatic effects, for instance,
particles moving in the presence of systems of masses, w
are integrable in Newtonian theory are chaotic in gene
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relativity; examples are the fixed two-body problem@7,8#,
and particles moving in a monopolar center of attraction s
rounded by a dipolar halo@9#. Also gravitational waves, a
nonexisting phenomenon in the Newtonian realm, can p
duce irregular motion of test particles orbiting around a sta
black hole @10,11#. Another distinctive feature of genera
relativity is the dragging of inertial frames due to mass ro
tion. This fact is observed, for instance, in the impress
differences of the geodesic motion in Schwarzschild a
Kerr geometries@12#.

Along this paper we shall study the geodesic equations
particles evolving in the space time associated to a cente
attraction with a quadrupolar deformation. The solution
the Einstein equations representing this center
attraction—in the static case—can be found in Ref.@13#,
wherein the rather misleading terminology ‘‘distorted bla
hole’’ was used to refer to such an object. Examples of st
centers of attractions with multipolar deformations are:

~a! A true static black hole~or a dense object! surrounded
by a distribution of matter like a ring or a small disk forme
by counter-rotating matter, i.e., built by approximately t
same number of particles moving clockwise as counterclo
wise. Even though this interpretation can be seen as a de
to have a static stable configuration, there is observatio
evidence of disks made of streams of rotating and coun
rotating matter@14#.

~b! An axially symmetric static dense object with eith
polar deformations or polar jets. In the case~a! we have
oblate deformations. Also the polar deformations of the S
and the inner planets in the solar system are oblate. We h
prolate deformations in stars with jets and in some gala
clusters@15#. In the precedent cases, by adding rotation
the central black hole and removing the counter-rotating
pothesis we can have stationary centers of attraction w
multipolar deformations. We recall that accordingly to t
nonhair black hole theorems, a noncharged black hole
completely characterized by its angular momentum a
mass, therefore any multipolar deformation for a true bla
hole must be interpreted as structures located outside
event horizon, which break the spherical symmetry of
system@16#.

Geodesic motions for axially symmetric space times r
©2002 The American Physical Society11-1
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EDUARDO GUÉRON AND PATRICIO S. LETELIER PHYSICAL REVIEW E66, 046611 ~2002!
resenting core-halo system were studied in Ref.@17# for
bounded motion and in Ref.@18# for unbounded motions
The case of a slowly rotating center of attraction with a
polar halo was considered in Ref.@19#. The geodesic chao
for a disk with a central center of attraction was conside
in @20#. A core-halo system with Newman-Unti-Tamburin
charge was also considered@21#. Newtonian @22# and
pseudo-Newtonian@23# counterparts of some of these sy
tems were also studied. In a recent paper—within the N
tonian realm—we studied chaotic motions of test partic
orbiting around a deformed body modeled by a monopo
and an internal quadrupolar term@24#.

In this paper, we dwell in the study of geodesic chaos,
now related tointernal quadrupole deformations of the a
traction center. Note that halos are external multipolar c
tributions, their strength increases with the distance, cont
to the internal ones that decrease with the distance. The
drupolar contribution usually represents the major deviat
to the spherical symmetry. Thus, as a good first approxi
tion, it can model most of the deformed sources.

We shall analyze only bounded motions for spec
choices of energy and angular momentum and certain va
of quadrupolar strength that we believe will cover all t
different typical situations. Due to the symmetry of the pro
lem, one can reduce the geodesic motion to a dynam
system with two degrees of freedom. For such cases,
Poincare´ section method is the most appropriated tool
study the general behavior of the geodesics.

In the first one, Sec. I, the exact solution to the Einst
equations, which represents a static axially symmetric sou
deformed by an internal quadrupole, is considered. The P
carésection method is used to study numerically the geo
sic motion of test particles orbiting around a deform
source, for prolate quadrupolar deformations we find cha
motion contrary to the oblate case where only regular mo
is found.

In the second one, Sec. II, the rotation of the attract
center is considered. We first study the metric that repres
a rotating black hole deformed by a quadrupolar term. T
metric is obtained as a two-soliton solution in the context
Belinsky-Zakharov inverse scattering method@25# that gen-
erates new solutions from a known one~seed solution!. As in
the preceding section, geodesics are numerically studied
ing surfaces of section. The consideration of different ca
leads us to conclude that the black hole rotation consider
alters the stability of the system. We obtain that the stabi
depends strongly on the relative direction of the spin of
center of attraction and the angular momentum of the
particle. We also find that the rotation does not alter
regular character of geodesic motions in the oblate case,
the orbits in this case remain regular. Finally, we discuss
summarize the obtained results. We also present and dis
some Poincare´ sections for test particles moving in the grav
tational field of a monopole with large rotation surround
by a dipolar halo.

I. SCHWARZSCHILD SOLUTION WITH QUADRUPOLE
DEFORMATIONS

The metric of the space time related to the gravitatio
field of a static axially symmetric source is the one asso
04661
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ated with the Weyl line element,

ds25e2cdt22e2(g2c)~dz21dr2!2r 2e22cdw2, ~1!

wheref andg are functions ofr andz only. The range of the
coordinatesr ,z,w are the usual ones for cylindrical coord
nates. It is more convenient to use prolate spheroidal coo
natesu andv, which are related to the Weyl coordinates b

r 25m2~u221!~12v2!, ~2!

z5muv,

wherem is a constant that reports to the mass of the cente
attraction. The coordinatev takes values in the interva
@21,1# ~it is essentially a cosine! andu runs from 1 to infin-
ity ~it is essentially a radial coordinate!. We shall use units
such thatc5G51. With no loss of generality we shall als
choosem51. In this new system of coordinates, the met
~1! takes the form,

ds25e2c(u,v)dt22e22c(u,v)~u221!~12v2!df2

2e2(g(u,v)2c(u,v))~u22v2!S du2

u221
1

dv2

12v2D . ~3!

For this line element, the vacuum Einstein equations
duces to

@~u221!c,u#,u1@~12v2!c,v#,u50, ~4!

g ,u5
~uc ,u22vc ,v!~u221!~12v2!c ,u2u~12v2!2c ,v

2

~u22v2!
,

g ,v5
~2uc ,u2vc ,v!~u221!~12v2!c ,v1v~u221!2c ,u

2

~u22v2!
.

~5!

Equation~4! is the usual Laplace equation in prolate coor
nates for the metric potentialc, and Eqs.~5! yield the func-
tion g as a quadrature. The integrability ofg (g ,uv5g ,vu) is
guaranteed by Eq.~4!. The potentialc for the Schwarzschild
solution in prolate coordinates is@5#

cS5
1

2
ln

12u

11u
. ~6!

In this paper we shall consider the solution

c5
1

2
ln

12u

11u
1k2P2~v !Q2~u!, ~7!

whereP2 and Q2 are the second Legendre polynomial a
function, respectively,
1-2
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GEODESIC CHAOS AROUND QUADRUPOLAR DEFORMED . . . PHYSICAL REVIEW E66, 046611 ~2002!
P2~x!5~3x221!/2,

Q2~x!5$P2~x!ln@~x11!/~x21!#23x%/2, ~8!

and k2 is a constant that is positive~negative! for oblate
~prolate! deformations. Note that the Newtonian limit of th
potential ~7! is f52m/R1(2m3k2/15)P2(cosq)R23 ~we
use the definition of Newtonian limit of Ref.@27#!.

From Eq.~5!, we find the other metric function,

g5$4@2„~7k2
2220k214!ln~u21!1~k212!2 ln~u11!

24 ln~u22v2!~k221!2
…23„~27u2v2230u2

221v2126!k228…ln„~u11!/~u21!…k2uv2

13„~27u2v4230u2v213u2212v4116v2!k2

216v2
…k2#23@4„~3u223u22!k218…

23~9u2v22u22v211!~u21!~v221!

3 ln„~u11!/~u21!!k2#~u11!

3 ln„~u11!/~u21!…k2%/64. ~9!

The exact solution to Einstein equations given by E
~7!–~9! was first studied by Erez and Rosen@28#. The gen-
eral case~Schwarzschild with the whole series of multipole!
was considered by Quevedo@29#, and a simple interpretation
in terms of bars was presented by Letelier@30#. This solution
is interpreted as a ‘‘distorted’’ black hole in Ref.@13#. The
study of the associated Newtonian multipoles, as well as
relativistic multipoles for this solution and other multipol
expansions can be found in Ref.@31#. The geodesic equa
tions for the metric~3! take the form

d2u

dt2
5

u221

2e2(g2c)~u22v2!

3$]ue2c1]u@~u221!~12v2!e22c#%

2u̇2S @]u~g2c!#1
~v221!u

~u22v2!~u221!
D

22u̇v̇S @]v~g2c!#2
v

~u22v2!
D

2 v̇2S ~u221!@]u~g2c!#

~v221!
1

~u221!u

~u22v2!~v221!
D ,

~10!
04661
.
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d2v

dt2
5

12v2

2e2(g2c)~u22v2!

3$]ve2c1]v@~u221!~12v2!e22c#%

2 v̇2S @]v~g2c!#2
~u221!v

~u22v2!~v221!
D

22u̇v̇S @]u~g2c!#1
u

~u22v2!
D

2u̇2S ~v221!@]v~g2c!#

~u221!
2

~v221!v

~u22v2!~u221!
D ,

~11!

E5e2c(u,v) ṫ , L5e22c(u,v)~u221!~12v2!ẇ, ~12!

where t5s/c5s and the overdots indicate derivative wit
respectt. E andL are constants of integrations related to t
test particle energy and the angular momentum, respectiv
The metric~3! gives a third constant of motion,

15e2c(u,v) ṫ22e22c(u,v)~u221!~12v2!ẇ2

2e2(g(u,v)2c(u,v))~u22v2!S u̇2

u221
1

v̇2

12v2D . ~13!

The motion of the test particle is completely determin
by the solution of the two second-order differential equatio
~10! and ~11!. They define a four-dimensional phase spa
but the motion constants~13! and~12! tell us that the motion
is effectively realized in a three-dimensional surface. Mo
over, these constants allow us to define an effective poten
like function,

F~u,v !5
e2„c(u,v)2v(u,v)…

~u22v2!
S e22c(u,v)E2

2
e2„c(u,v)2v(u,v)…

~u221!~12v2!
L221D . ~14!

Thus the motion must be restricted to the region defined
the inequalityF(u,v)<0.

Since the geodesic motion of the test particles is p
formed in a three-dimensional effective phase space, an
equate tool to study this motion is the Poincare´ section
1-3
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EDUARDO GUÉRON AND PATRICIO S. LETELIER PHYSICAL REVIEW E66, 046611 ~2002!
method. As we mention before, the sign of the quadrup
parameterk2 specifies whether the source is deformed in
prolate or in an oblate shape.

A. Prolate deformation

First we shall study the prolate case,k2,0. From relation
~14!, we find the appropriated constants to have a confi
motion. We have that only three combinations of the co
stants:E ~energy!, L ~angular momentum!, andk2 ~quadru-
pole strength! typify all the possibilities of confinement.

In Fig. 1 we present the curveF(u,v)50 for L53.8,
E50.9731, andk2521, this is the most common situatio
found for bounded internal prolate quadrupole solutio
There is only one smooth closed surface. The caseL
53.32, E50.937, andk2525.0 is presented in Fig. 2, w
still see only one closed surface, but now we have two
gions linked by a narrow connection. Finally, in Fig. 3, w

FIG. 1. Boundary contour forL53.8, E50.973, andk25
21.0. There is an escape zone and one region of bounded mo
u andv are dimensionless.

FIG. 2. Boundary contour forL53.32, E50.937, andk25
25.0. There are two escape zones in the left-hand side of the
ture, which correspond to small values ofu, and a closed zone o
bounded motion which is almost divided into two.
04661
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present the curveF(u,v)50 for L53.32, E50.937, and
k2525.02, we have two disconnected bounded regio
This last situation is quite different in the Newtonian lim
wherein the bounded surface is separated in two regions:
above and other below the equatorial plane as shown in
4~d!. In other words, we can say that in the general rela
istic case the closed surfaces are two concentric rings, w
in the Newtonian theory one is the reflection of the oth
under the planez50.

The behavior of orbits using Poincare´ surface sections for
each one of the three sets of constants indicated abov
presented in Figs. 5–7. In Fig. 5 we show that the motion
the bounded region of Fig. 1 is regular as in the case o
pure Schwarzschild black hole@17#. In Fig. 6 we show the
Poincare´ section for orbits restricted to the closed surfa

n.

ic-

FIG. 3. Same values of the preceding figure, but nowk25
25.02. There are two escape zones in the left-hand side of
picture and two closed zones of bounded motion.

FIG. 4. A sequence of bounded regions in the Newtonian pro
quadrupole plus monopole solution. The linesd represent two
closed surfaces separated by the planez50. The coordinatesr and
z are measured in geometric units, and the mass of the cente
attraction is assigned the value of 1.
1-4
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GEODESIC CHAOS AROUND QUADRUPOLAR DEFORMED . . . PHYSICAL REVIEW E66, 046611 ~2002!
presented in Fig. 2. It is interesting to observe that we hav
region of irregular motion on the right and a region of reg
lar motion surrounded by a layer of chaos on the left. In F
7 we present a Poincare´ section for the two bounded region
of Fig. 3. In the bounded region of the left-hand side of t
figure, we have a typical picture of chaotic motion, but orb
confined in the other bounded region present regular mot

These results can be understood by studying the effec
potential critical points. We recall that a pure black ho
(k250) with adequate values of the constantsE andL has an
effective potential with a single saddle point. When we a
the prolate quadrupolar fieldk2,0, we have a second sadd
point for the value of the constants of Figs. 3 and 2. In
third case~Fig. 1! the second saddle point disappears, and
end up with the same dynamical behavior of the test parti
as in the pure Schwarzschild black hole case. In the gen
relativistic example there can be two the saddle points on
planez50, while in the Newtonian analog we can have
most one in this plane@24#.

B. Oblate deformation

For the case of oblate quadrupole deformation, i.e.,k2
.0, we always find regions of bounded motion very simi

FIG. 5. Poincare´ section for the values defined in Fig. 1. W
have regular motion.Pu[du/dt, t is measured in geometric unit
with the unit of mass taken as in the preceding figure.

FIG. 6. Poincare´ section for the values defined in Fig. 2. We s
chaotic motion in the left-hand side of the figure and in a sm
external region on the right-hand side.
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to the one presented in Fig. 1. A configuration with tw
bounded regions, like the ones presented in Fig. 3, is
possible. The typical example is shown in Fig. 8, whereE
50.96, L53.8, andk255. We see that there is just on
bounded region, and the escape zone is not divided into
like that in the prolate cases, i.e., the origin belongs to
escape region. This indicates the absence of a second s
point, like that in the pure black hole situation. However,
the Newtonian limit, we can find one saddle point on t
planez50.

The geodesics were studied using surface sections
many different values ofE, L, andk2.0. We find only regu-
lar motions. In Fig. 9 we present a typical Poincare´ section
for this case. The parameters are the ones of Fig. 8.
observe that, at least in our computer resolution, the tor
the total integrable situation are not destroyed.

II. KERR SOLUTION WITH QUADRUPOLE
DEFORMATIONS

Since the Kerr solution represents a rotating black ho
the addition of an internal multipole term can be used

ll

FIG. 7. Poincare´ section for the values defined in Fig. 3. We s
chaotic behavior in orbits confined in the first zone of bound
motions, but the motion in the second zone is regular.

FIG. 8. Boundary contour forL53.8 andE50.96, but now
k255.0. We see one bounded region. The escape zone contain
origin.
1-5
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model a rotating star or the core of a galaxy. The black h
rotation produces the pure relativistic effect of dragging
inertial frames. Then our main goal in this section is to stu
the influence of the black hole rotation on the stability
geodesic motions. Letelier and Vieira@19# studied the motion
of test particles moving around a slowly rotating black ho
with a dipolar halo. Now we shall study the case of a cen

FIG. 9. Poincare´ section for the values defined in Fig. 8. W
have regular motion.
04661
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body with arbitrary rotation deformed by an internal quad
pole term.

The metric for a stationary axially symmetric space tim
has the general form

ds25gttdt212gtfdtdf1gffdf22eG~u22v2!

3F du2

u221
1

dv2

12v2G , ~15!

wheregtt , gtf , gff , andG are function of the coordinate
u,v.

To construct the solution of the vacuum Einstein that re
resents the superposition of a Kerr black hole and a field
multipoles, we use the Belinsky-Zakharov method@25#. In
this method the Kerr space time is obtained from t
Minkowski vacuum~seed solution! as a two-soliton solution.
The application of this solution generating algorithm to mo
general seeds was studied by Letelier@32#. Some other re-
cursive methods are described in Ref.@26#. Using the tech-
niques presented in Ref.@32#, we easily obtain the metric
functions gtt(u,v), gtf(u,v), gff(u,v), and f (u,v) that
represent a Kerr black hole deformed by multipolar term
We choose a quadrupolar field as a seed solution. Then
Belinsky-Zakharov two-soliton transformation give us t
nonlinear superposition of a Kerr solution with this field. W
find
gtt5†eH
„e2H$@2e2F112F2~u22v2!2e2H~v221!#~p11!22e4F1~u11!~u21!q2%q22e4F2@e2H~p11!2~u11!~u21!

1e4F1~v221!q2#~p11!2
…‡/„e2H$@2e2F112F2~u1v !~u2v !2e2H~v21!2#~p11!2e4F1~u21!2q2%q22e4F2

3@e2H~p11!2~u11!21e4F1~v11!2q2#~p11!2), ~16!

gtf5$22eH@e2H$@2e2F112F2~u22v2!2e2H~v221!#~p11!22e4F1~u11!~u21!q2%q22e4F2@e2H~p11!2~u11!~u21!

1e4F1~v221!q2#~p11!21„e2F1@e4F2~p11!2~u11!~v11!1e2H~u21!~v21!q2#~u2v !2e2F2@e2H~p11!2~u11!

3~v21!1e4F1~u21!~v11!q2#~u1v !…~p11!p‡q%/„e2H$@2e2F112F2~u22v2!2e2H~v21!2#~p11!2

2e4F1~u21!2q2%q22e4F2@e2H~p11!2~u11!21e4F1~v11!2q2#~p11!2
…, ~17!

gff5
gtf

2 2p2~12v2!~u221!

gtt
, ~18!

eG52~exp@$„†„4@2 ln~u11!181u2v4290u2v219u2236v4148v228 ln~u1v !114 ln~u21!28 ln~u2v !#

19~9u2v22u22v211!~u221!~v221!ln@~u11!/~u21!#2212@27u3v4230u3v213u3222~21v225!

3~v221!u# ln@~u11!/~u21!#%k2216$~3u221!ln@~u11!/~u21!#26u%~3v221!…k2‡/128…#

3„e2H$@2e2F112F2~u22v2!2e2H~v21!2#~p11!1e4F1~p21!~u21!2%~p21!1e4F2@e2H~p11!~u11!2

2e4F1~p21!~v11!2!~p11!#…/@4e2F112F212H~u22v2!p2#, ~19!
1-6



-

u
et

ui
a

-

t

t

ua-

o

ex-
The
hus
the
ng

on-
the

ng

pin

for

d in

for

GEODESIC CHAOS AROUND QUADRUPOLAR DEFORMED . . . PHYSICAL REVIEW E66, 046611 ~2002!
where

F15†2„2$2@ ln~u11!23v223 ln~u21!12 ln~u2v !#

13~3v21!~v11!u%13$@v1312~v11!u#~v21!

2~3v21!~v11!u2% ln@~u11!/~u21!#…k2‡/16, ~20!

F25†2„2$3@~3v21!~v11!u12v2#24 ln~u1v !

14 ln~u21!%23@~3v21!u2~v11!#~u11!~v11!

3 ln@~u11!/~u21!#…k2‡/16, ~21!

H5„$~3u221!ln@~u11!/~u21!#26u%~3v221!k2…/8k2/8.

~22!

The quadrupole strength isk2 , q is the source angular mo
mentum per square of the mass, andp is defined by the
relationp21q251. The metric presented above is a partic
lar case of the general solution that represents a Kerr m
embedded in a field of multipoles, see for instance Refs.@33#
and @30#.

When one performs the limitk2→0 in the solution pre-
sented above, one obtains the Kerr metric in Boyer-Lindq
coordinates,r andq that are related to the prolate spheroid
coordinates,u and v by u5(r 2m)/s, and v5cosu. The
constantsp and q are related to the Boyer-Lindquist con
stants byp5s/m, q5a/m, and m25s21a2, wherem is
the monopole mass,s is an auxiliary constant, anda is in-
terpreted as the black hole angular momentum per uni
mass measured by a very distant observer.

As in the preceding case, the geodesic equations have
constants of motion,L andE,

E5gtt ṫ1gtfḟ,

gffḟ1gtf ṫ5L. ~23!

The evolution equations foru andv are

d2u

dt2
5

u221

2G~u22v2!
@]ugtt ṫ

212]ugtf ṫ ḟ1]ugffḟ2#

2u̇2F ]uG

2G
1

~v221!u

~u22v2!~u221!
G22u̇v̇F ]vG

2G

2
v

~u22v2!
G2 v̇2F ]uG~u221!

2G~v221!
1

~u221!u

~u22v2!~v221!
G ,

~24!
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d2v

dt2
5

12v2

2G~u22v2!
@]vgtt ṫ

212]vgtf ṫ ḟ1]vgffḟ2#

2 v̇2F ]vG

2G
2

~u221!v

~u22v2!~v221!
G22u̇v̇F ]uG

2G

1
u

~u22v2!
G2u̇2F ]vG~v221!

2G~u221!
2

~v221!v

~u22v2!~u221!
G .

~25!

Also, as before we have two second-order evolution eq
tions ~24! and~25! for the variablesu andv, the metric and
the constants~23! give a new constant relating these tw
variables,

15gttE212gtfEL1gffE22eG~u22v2!

3F u̇2

u221
1

v̇2

12v2G . ~26!

In other words, despite algebraic complications, we have
actly the same dynamical situation as in the static case.
particles move in an effective three-dimensional space. T
we can analyze the motion of test particles moving in
gravitational field of a rotating prolate deformed body usi
Poincare´ sections as in the nonrotating case.

Since the main new ingredient in the system under c
sideration is the rotation of the source, we shall keep
angular momentumL, the energyE, and the quadrupole
strengthk2 fixed; and we shall consider test particles movi
with angular momentum parallel to the spin source~corota-
tion! and with angular momentum counterparallel to the s
source~counter-rotation!.

In Fig. 10 we present the region of bounded motions
counter-rotating orbits,qL,0. We takeE50.937 15, uLu
53.322, andk2525.08, and for the rotation parameterq
50.002. We have a situation similar to the one presente
Fig. 2. The bounded regions for the corotation case,qL

FIG. 10. Boundary contour of the Kerr-quadrupole system
L523.322,E50.937 15,k2525.08, andq50.002.
1-7
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EDUARDO GUÉRON AND PATRICIO S. LETELIER PHYSICAL REVIEW E66, 046611 ~2002!
.0, is shown in Fig. 11. We see two relatively small a
distant closed surfaces. The Poincare´ section for the counter
rotating case is presented in Fig. 12. Chaotic motion can
seen on the left of the graphic and in the external part of
right-hand side, as in Fig. 6. In Fig. 13, we present the s
face section for the same parameters as above, butqL.0
~corotation!. We do not find chaotic motion in this case.

We were not able to obtain bounded motion for both la
quadrupole strengths and large rotation parameters. We s
bounded systems with large rotation speed~of the order of
0.1!, but with quadrupole strength always less than unity.
these cases, the study of Poincare´ sections leads to regula
geodesic motion for corotation as well as counter-rotati
We also found that the confinement region may suffer
appreciable change in size and shape.

DISCUSSION

Besides the results presented in the previous section
have constructed some Poincare´ surfaces for the external di

FIG. 11. Boundary contour for a Kerr-quadrupole system
L53.322, E50.937 15,k2525.08, andq50.002. The confine-
ment region is separated in two, they are much smaller than in
preceding figure.

FIG. 12. Poincare´ section for the same value of the paramet
of Fig. 10. We have chaotic motion mainly in the left-hand side
the picture.
04661
e
e
r-

e
dy

n

.
n

we

pole plus black hole solution. We also study combinatio
including internal octopole and external quadrupole term
rotating sources were considered as well. We found that
the great majority of values of momentum and energy, wh
confined the motion there are only regular orbits, in gene
chaotic geodesics are found near the central mass for
tances less than 50 black hole masses~in geometric units!.
Therefore, we conclude that observational consequence
the geodesic instabilities will be mostly relevant in a ve
restricted area close to the black hole.

Large rotations, 1.q>0.1, were analyzed studying som
Poincare´ sections for a solution that represents a monop
surrounded by a dipolar halo. We did not find an intern
quadrupole solution with large rotation and quadrup
strength of the same order of the static examples studie
the preceding sections because the bounded regions
pletely disappear for large rotations. We present three P
caré sections for a rotating black hole plus dipole soluti
using the parametersL53.988, E50.9665, and D
50.0005. In Fig. 14 we consider a static black hole. In F
15, a rotating system is considered with rotation parame
q55/13, the geodesics corresponding to the corotating

r

e

s
f

FIG. 13. Poincare´ section for the same value of the paramete
of Fig. 11. We do not see irregular motion in both regions.

FIG. 14. Poincare´ section for the static black hole plus dipo
solution usingL53.988,E50.9665, andD50.0005. It looks like
an integrable motion.
1-8
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GEODESIC CHAOS AROUND QUADRUPOLAR DEFORMED . . . PHYSICAL REVIEW E66, 046611 ~2002!
bits. In both figures there are apparently only nonchao
orbits in phase space. This situation changes completely
counter-rotation, using the same parameters of Fig. 15,
q525/13, we find in Fig. 16 the surface of section of ch
otic orbits.

The main results of this paper are: We find chaotic g
desics in the geometry that characterizes an internal qua
pole plus monopole solution for the prolate case. In the
late case these orbits appear to be regular. This behavi
similar to the Newtonian analogs, except for the fact that
closed region that confines the chaotic orbits are very dif
ent @33–35#.

For rotating sources we see that large speeds alter sig
cantly the bounded regions, and consequently chaotic
gions for counter-rotation arise in situations where the st
case seems to be nonchaotic. We conclude that observat
effects may be found for this group of orbits. In spite of the
modifications, it is also very difficult~perhaps impossible! to
find chaotic geodesics around rotating sources with an ob
quadrupolar deformation, like that in the static case. T
result tells us that there are no numerical evidences of
existences of nonintegrable geodesics in the internal qua
pole plus monopole solution in general relativity. In oth
words it does look like that the motion of test particles o

FIG. 15. The same as the preceding figure, but now we
rotation,a/m55/13. The center of attraction is a rotating black ho
with a dipolar halo.
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biting around internal an oblate quadrupole plus monop
center of attraction in the Newtonian gravitation, as well
in the general relativity are integrable. To prove the integ
bility of these systems is not an easy task. Also to perform
Painlevétype of analysis@36# for these cases is quite in
volved,

This work intends to complete the study of chaos of ge
desic motion in axially symmetric metrics obtained from
multipolar expansion. We think that the next natural step
the study of stability of astrophysical structures confined
situations described by this model, specially when gene
relativistic effects can make a difference.

The exact solution to Einstein equations presented in
preceding sections are not new, and different versions
them have already appeared in the literature. We pre
them in this work for two reasons:~a! for easy reference, and
~b! mainly, because for numerical analysis we need a fa
less solution. The ones presented here were derived u
algebraic computation and checked using the full vacu
Einstein equations in each case.
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d FIG. 16. A surface of section with the same parameters of F
15, but for counterrotating orbits (Lq,0). Irregular motion is seen
here.
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